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Abstract
The study aimed to identify the effects of whole-body cryotherapy (WBC) on immunological, hormonal, and metabolic re-
sponses of non-professional male athletes. Ten cyclists and ten middle-distance runners received 3 once-a-day sessions ofWBC.
Before initiating and after the final WBC session, a full set of hematologic parameters, serum chemistry profile, hormones,
circulating mitochondrial (mt) DNA levels, cytokines, and chemokines concentration were evaluated. The phenotype of mono-
cyte, T cells, and B cells was analyzed. mRNA expression of 6 genes involved in inflammasome activation (NAIP, AIM2,
NLRP3, PYCARD, IL-1β, and IL-18) was quantified. WBC reduced glucose and C and S protein and increased HDL, urea,
insulin-like growth factor (IGF)-1, follicle-stimulating hormone, IL-18, IL-1RA, CCL2, and CXCL8. Intermediate and non-
classical monocyte percentages decreased, and the CD14, CCR5, CCR2, and CXCR4 expressions changed in different subsets.
Only IL-1β mRNA increased in monocytes. Finally, a redistribution of B and T cell subsets was observed, suggesting the
migration of mature cells to tissue. WBC seems to induce changes in both innate and adaptive branches of the immune system,
hormones, and metabolic status in non-professional male athletes, suggesting a beneficial involvement of WBC in tissue repair.
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Introduction

Skeletal muscle undergoes continuous repair as a result of its
contractile activity. The early phase of muscle regeneration is
characterized by the migration/infiltration of innate immune
cells, including monocytes and the activation of resident mus-
cle stem cells, which are essential for efficient muscle

regeneration. Thus, the inflammation plays a crucial role in
tissue repair, and there is a cross-talk between skeletal muscle
and the immune system [1]. Regular exercise leads to changes
in circulation, metabolism, and in the immune system, with an
anti-inflammatory effect, while a mechanical overload associ-
ated with intense physical effort is associated with more pro-
nounced muscle necrosis and inflammation [2]. Whole-body
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cryotherapy (WBC) is the short exposure (few minutes) to dry
air at cryogenic temperatures and has recently been applied for
the muscle recovery after injury to counteract the inflamma-
tory response due to overload syndrome [2, 3]. Due to its anti-
inflammatory effects, WBC start to be used also for patholo-
gies in which the modulation of systemic inflammation could
exert beneficial effects, as in the case of rheumatoid arthritis
[4, 5], fibromyalgia [6, 7], or ankylosing spondylitis [8, 9].
Moreover, WBC is used with increasing frequency as a meth-
od of well-being [10]. Recent reports suggest that one or more
WBC sessions can induce acute hormonal, anti-inflammatory,
perceptual, and physiological responses [11]. However, most
studies investigating the effects of WBC on athletes have
evaluated a small panel of both hematological and hormonal
parameters and very few cytokines [3]. Further, dedicated
studies have not analyzed possible changes in monocytes:
cells that migrate to tissue as major drivers of inflammation
and tissue repair. In this study, we investigated changes in-
duced by WBC treatment on a variety of immunological pa-
rameters and inflammatory markers during the training period
of non-professional male cyclists and runners. We analyzed a
large panel of cytokines, hematological and hormonal param-
eters, as well as circulating mitochondrial DNA, a molecule
released by necrotic cells able to trigger inflammation acting
as a damage-associated molecular pattern. Moreover, to better
understand the influence of WBC on innate and acquired im-
munity, we studied the phenotype of monocytes, T and B
lymphocytes, as well as the expression of inflammatory genes
in monocytes.

Materials and methods

Subjects

Twenty volunteer non-professional athletes were recruited by
the Sports Medicine Unit of Modena for consecutive WBC
sessions, proposed over a 3-day schedule. WBC consists of
brief exposure (3 min) to extremely cold air (− 190 °C) inside
a cylindrical chamber (Cryomed Manufacture s.r.o., Nové
Zámky, Slovakia) in which the subject’s head and hands re-
main outside and not subjected to the cold stimulus. Subjects
have always worn intimate clothing. Cyclists (n = 10, mean
age ± SD: 44 ± 5 years) and middle-distance runners (n = 10,
38 ± 12 years old) were recruited from dedicated sports clubs.
Subjects with known injuries or inflammatory diseases were
excluded. During the study, the athletes’ training programs
were maintained from previous weeks: cyclists trained three
times a week (average 30 km/ride) and runners trained once a
day (average 60 min/run). For both cyclists and runners, train-
ing sessions were in the evenings. WBC sessions (as well as
blood and urine collection) were conducted at lunchtime.
Regarding the training, cyclists have no requirement for

speed; as non-professional athletes, they ride at constant speed
for an average of 30 km per day, three times a week. The
training of runners was scheduled for alternating a day of
20-min run with an easy warm-up plus aerobic repeats and a
day of 40/70 min of endurance running. Regardless of the
training day or type, at least 16 h passed between training
and blood collection/WBC treatment, avoiding the interfer-
ence of acute, transient effects of exercise on the immune
system. This study was conducted in agreement with ethical
recommendations of the Declaration of Helsinki, and all ex-
periments were approved by the Ethics Committee of Area
Vasta Nord Emilia Romagna (protocol number 88/2018/
SPER/AUSLMO). All the participants gave written informed
consent. Volunteers were involved in the reporting and dis-
semination of our research.

Blood and urine samples collection

Subjects underwent two sessions of capillary blood and urine
samples collection: before the initial WBC session (day 1) and
immediately following the third and finalWBC session (day 3).
For each sample collection, 40 ml of venous blood was collect-
ed. Hematology, clinical chemistry, and hormonal parameters
were assessed at the BLU Laboratory (NOCSAE, Baggiovara,
Modena, certification #ISO90012015) according to routine
hospital protocol. Immunological analyses were performed in
the “Laboratory of Pathology and Immunology” of the
University of Modena and Reggio Emilia. Urine samples col-
lected in sterile containers were analyzed by the BLU
Laboratory. The study’s workflow is summarized in Fig. 1.

Plasma and monocytes isolation

Peripheral blood mononuclear cells (PBMCs) were isolated
from blood using a standard procedure of density-gradient
centrifugation. A minimum of 2 million CD14+ cells was
isolated from 20 million PBMCs through well-standardized
immunomagnetic separation (Miltenyi Biotec, Bergisch
Gladbach, Germany). Plasma was separated from blood and
further centrifuged to remove and discard platelets (at 4 °C,
2850 g for 15 min). The supernatant was collected, aliquoted,
and stored at − 80 °C.

Quantification of plasmatic soluble factors

Soluble factors were analyzed in plasma samples by magnetic
bead-based multiplex assay for the Luminex® platform
(RandD System, Minneapolis, MN, USA). In particular,
TNF-α, IL-6, IL-1β, IL-10, IL-12p70, IL-2, IL-8 (CXCL8),
and VEGF-A were quantified using a “Luminex Performance
Human High Sensitivity Cytokine Magnetic Panel A” while
CCL2, CCL19, CXCL13, TNFSF6, IL-1α, IL-1ra, and IL-18
using a “Human Magnetic Luminex Assay.”
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DNA extraction from plasma samples and
quantification of circulating mtDNA

Total DNAwas extracted from plasma samples using a QIAmp
DNAMinikit, Qiagen (Alameda, CA, USA), following manu-
facturer instructions. A droplet digital (dd)PCR assay was used
to quantify circulating mtDNA. One microliter of DNA was
added to a 20 uL final volume mixture containing 10 uL of 2x
ddPCR Supermix for Probes, 1 uL of ddPCR assay for ND2
(UniqueAssayID, dHsaCPE5043508), 1 uL of ddPCR assay
for EIF2C1 (UniqueAssayID, dHsaCP2500349), and 7 uL of
nuclease-free water (all reagents from Bio-Rad, Hercules, CA,
USA). Droplet generation and reading were performed on a
Bio-Rad QX200 ddPCR droplet system [12]. Circulating
mtDNA content was expressed as the number of copies per
milliliter of plasma.

Immunophenotyping of monocytes

Three million cryopreserved PBMCswere thawed and stained
with Aqua Live Dead Probe (Thermo Fisher Scientific) and
the fluorochrome-conjugated monoclonal antibodies anti-
CD16 AF488, anti-CD14 APC, anti-HLA-DR PE-Cy7, anti-
CCR2BV605, anti-CXCR4 PE, and anti-CCR5 BV421 (from
BioLegend, San Diego, USA). Different subsets of monocytes
were identified by an Attune Nxt flow cytometer (Thermo
Fisher Scientific), and data were analyzed by FlowJo 9.9.6
(Ashland, OR, USA) according to recent guidelines [13]. To
identify the three main monocytes subsets (classical, non-

classical, and intermediate), we applied a previously described
sequential gating strategy [14].

Phenotype of B and T cells

Up to 3 million PBMCwere stained with the DuraClone IMB
or T panel (ref. B53318 and B53328, respectively; Beckman
Coulter, BC, FL, USA), and cells were acquired with the
Cytoflex LX (Beckman Coulter). For phenotypic analysis of
B lymphocytes, a gating strategy was employed according to
the manufacturer’s instructions. The T cell panel was enriched
by the fluorochrome-conjugated mAbs Promokine 840 (for
determining viable cells), CD127 BV650, CD25 BV785,
CD95 BUV 395, and HLA-DR BUV661 for regulatory T
(Treg) cells and activated T cells identification.

Relative quantification of mRNA expression

Cryopreserved monocytes were thawed, and RNA was ex-
tracted (QuickRNA miniPrep kit from Zymo Research,
Irvine, CA, USA) and reverse transcribed (iScript cDNA syn-
thesis kit from Bio-Rad, Hercules, CA, USA). The CFX96
Touch Detection System (Bio-Rad) was used to quantify
mRNA with SYBR Green chemistry. Seven genes involved
in inflammasome activation were detected using pre-validated
Prime PCR Assay (Bio-Rad) as previously described [10]:
RPS18 was the reference gene, AIM2, IL1β, IL18, NAIP,
NLRP3, and PYCARD. Relative expression of mRNA was
calculated through ΔΔ-cycle method referred to pre-WBC
treatment data [15].

Baggiovara, Modena)
Blood
Glucose, urea, crea nine , uric acid, cholesterol, HDL, LDL,
triglycerides, bilirubin T, bilirubin D, T Proteins, GOT, GPT ,GGT,
CK, amylase, sodium, potassium, iron, transferrin , % satura on,
ferri n, phosphorus, lac c acid, C protein, S protein, white blood
cells, red blood cells, hemoglobin, hematocrit, MCV, MCH, MCHC,
RDW, platelets, MPV, % and count of lymphocytes, monocytes,
eosinophils, basophils, neutrophils and re culocytes, TSH,
testosterone, cor sol, GH, IGF-1, pep de C, insulin, LH, FSH, E2,
progesterone.
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Specific gravity, pH, glucose, proteins, hemoglobin, ketones,
bilirubin, urobilinogen, leukocyte esterase, nitrite.
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mRNA rela ve expression of RPS18 (reference gene), AIM2, IL1β,
IL18, NAIP, PYCARD.

Peripheral blood mononuclear cells
Immunophenotype by flow cytometry of monocytes, B cells and T
cells.
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Fig. 1 The study’s workflow.
Free icons used in the figure are
made by “https://www.flaticon.
com/authors/smashicons”
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Statistical analysis

Quantitative variables were compared between pre- and post-
WBC by the Wilcoxon matched-pairs signed-rank test or by
two-way ANOVA and Sidak’s multiple comparisons test.
Correlations between clinical and molecular data were ex-
plored with linear regression analysis. p values < 0.05 were
considered statistically significant. All data reported in tables
are expressed as mean and standard deviation. All data shown
in column graphs represented the mean and the standard error
of the mean (SEM). Statistical analyses were performed using
Prism 6.0 (GraphPad Software Inc., La Jolla, USA).

Results

Blood, plasma, and serological determinations

We summarized in Table 1 the results of blood, plasma, and
serological determinations, which resulted in increased or de-
creased afterWBC treatment. Among the 24 blood parameters
evaluated by analytical chemistry, cyclists showed a decrease

of blood glucose and an increase of urea, and runners experi-
enced a slight decrease of creatinine and an increase of T
proteins and phosphorus. In all cases, the laboratory test re-
sults were within normal ranges. No appreciable variations in
urine tests were registered (specific gravity, pH, glucose, pro-
teins, hemoglobin, ketones, bilirubin, urobilinogen, leukocyte
esterase, nitrite; data not shown). Twenty-four blood count
determinations were performed, and only protein C and S
(two vitamin K-dependent plasma proteins that work together
as a natural anticoagulant system) decreased significantly in
cyclists. No blood count changes were observed for runners.
In all cases, laboratory test results were within normal ranges.
Eleven hormones were quantified, and analysis revealed an
increase of insulin-like growth factor (IGF)-1 and follicle-
stimulating hormone (FSH) in cyclists and only a slight de-
crease in insulin in runners. In all cases, laboratory test results
were within normal ranges. From a total of fourteen soluble
factors quantified, an increase of CXCL8 and CCL2 in both
cyclists and runners and IL-18 and IL-1ra increase in cyclists
were registered. Circulating mtDNA was similar before and
after WBC in both groups, but it is lower in runners (p = 0.029
and p = 0.023, before and after WBC, respectively).

Table 1 Blood, plasma, and serological determinations

Cyclists Runners

Before After p value Before After p value

Blood analytical chemistry
Glucose (mg/dL) 91.00 ± 6.09 82.90 ± 5.09 0.0117 80.60 ± 12.66 83.70 ± 10.87 0.4375
Urea (mg/dL) 35.20 ± 10.76 42.00 ± 10.53 0.0117 35.40 ± 6.15 33.60 ± 5.54 0.4746
Creatinine (mg/dL) 0.86 ± 0.12 0.86 ± 0.10 0.8164 0.90 ± 0.10 0.86 ± 0.09 0.0430
HDL (mg/dl) 66.50 ± 10.27 68.90 ± 10.77 0.0391 66.80 ± 13.38 67.90 ± 12.85 0.4824
T proteins (g/dL) 7.49 ± 0.54 7.60 ± 0.48 0.1563 7.49 ± 0.35 7.88 ± 0.57 0.0410
Phosphorus (mg/dl) 3.55 ± 0.55 3.50 ± 0.37 0.7109 3.27 ± 0.35 3.58 ± 0.36 0.0020

Blood count determinations
C protein (%) 116.30 ± 21.47 99.90 ± 21.80 0.0098 101.20 ± 17.31 95.91 ± 17.36 0.3076
S protein (%) 98.90 ± 19.40 84.60 ± 16.93 0.0137 102.40 ± 14.40 98.27 ± 16.63 0.4746

Hormone analysis
IGF-1 (ng/ml) 194.20 ± 30.21 221.80 ± 29.97 0.0059 242.00 ± 66.74 243.70 ± 69.56 0.8311
Insulin (microIU/ml) 4.50 ± 3.36 3.74 ± 1.80 0.9219 4.58 ± 2.50 3.24 ± 1.60 0.0488
FSH (mIU/ml) 4.63 ± 4.86 5.19 ± 5.67 0.0195 3.83 ± 1.96 3.92 ± 1.97 0.6523

Cytokines and chemokines
IL-18 (pg/ml) 415.20 ± 178.00 442.20 ± 172.20 0.014 315.17 ± 87.04 321.9 ± 87.56 0.193
IL-1RA (pg/ml) 409.6 ± 140.2 467.3 ± 161.4 0.002 375.3 ± 125.6 394.1 ± 197.00 0.625
CXCL8 (IL-8) (pg/ml) 2.54 ± 0.70 3.09 ± 0.90 0.020 2.54 ± 1.07 3.26 ± 2.03 0.008
CCL2 (pg/ml) 173.80 ± 55.15 198.90 ± 58.39 0.020 155.1 ± 26.97 193.8 ± 53.18 0.027

Circulating mtDNA
mtDNA copies/ml 2.978e+06 ± 1.208e+06 3.844e+06 ± 1.326e+06 0.250 1.641e+06 ± 1.510e+06 2.398e+06 ± 1.712e+06 0.3236

Blood analytical chemistry, blood count determinations, hormone and cytokines, and chemokines measured before and after a 3 one-day of WBC
treatment. Values are expressed as mean and standard deviation. p values are calculated byWilcoxonmatched-pairs signed-rank test. p values < 0.05 are
in italics.HDL high-density lipoprotein, LDL low-density lipoprotein, T total, D direct, GOT glutamic oxaloacetic transaminase, GPT glutamic pyruvic
transaminase, GGT gamma-glutamyl transpeptidase, CK creatine kinase,MCVmean corpuscular volume,MCHmean corpuscular hemoglobin,MCHC
mean corpuscular hemoglobin concentration, RDW red cell distribution width, MPV mean platelet volume, TSH thyroid-stimulating hormone, GH
growth hormone, IGF-1 insulin-like growth factor, LH luteinizing hormone, FSH follicle-stimulating hormone, E2 estradiol. Data are reported as mean
and standard deviation
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Phenotypic analysis of monocytes

To identify the main monocytes subsets (classical, non-classi-
cal, and intermediate), we applied a gating strategy described
in Fig. 2. Figure 3 shows the results of monocyte flow cytom-
etry analysis. In particular, we reported only the subsets where
a significant change was observed before and after WBC. The
percentage of total monocytes did not change. Interestingly,
cyclists showed a decrease in intermediate and non-classical
monocytes, and runners showed a decrease in non-classical
monocytes only. In total monocytes, decreased expressions
were observed in CD14, CXCR4, CCR5, and CCR2 for cy-
clists and in CCR5 and CXCR4 for runners. Within the clas-
sical subset, CCR2, CCR5, and CXCR4 expression decreased
for cyclists (observed as a trend only in runners). The CCR5
expression in the intermediate subset decreased only for cy-
clists. No changes were observed for either group in the
CCR5, CCR2, and CXCR4 non-classical monocytes
expression.

Expression of inflammasome genes

The only gene expression of the main components involved in
inflammasome activation that significantly increased during
the study period was the IL-1β for all athletes, and this change
was significantly higher for cyclists (p < 0.05, Sidak’s multi-
ple comparisons test; Fig. 4).

Phenotype of B and T cells

For phenotypic analysis of B lymphocytes, a gating strat-
egy was employed according to the manufacturer’s instruc-
tions (Fig. 5). In cyclists, no changes were observed in the
percentage of B cells (CD19+) on total lymphocytes, but,
within them, the percentage of CD21low CD38low B cells
increased significantly, while, marginal zone, class
unswitched, and switched memory B cells decreased after
treatment. In runners, we observed no significant varia-
tions in B cell subsets, despite exhibiting a similar trend
for other cell subsets identified in cyclists (Fig. 6). Figure 7
shows a representative gating strategy for T cell identifica-
tion. In cyclists, the percentage of CD4+ T cells increased
and CD8+ decreased after treatment. Analysis of the T cell
differentiation showed no significant changes in CD4+ T
cell subsets. In CD8+ EMRA decreased and an increase in
naïve T cells were observed.

Exhausted CD4+ and CD8+ T cells decreased as well as
Treg cells among CD4+ (Figs. 8 and 9). The percentage of
CD4+ and CD8+ T cells did not change in runners. Among
CD4+ T cells, they showed a similar trend to that of cyclists
for the decrease of exhausted cells. Additionally, naïve de-
creased and central memory cells increased. Among CD8+
T cells, treatment does not seem to affect cell distribution
(Figs. 8 and 9). Finally, we did not find any significant corre-
lations between laboratory and immunological parameters
(data not shown).
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Discussion

The current study suggests that WBC treatment in non-
professional male cyclists and runners acts on the innate
branch of the immune system and tissue repair mechanisms.
The greatest benefit seems to be gained by cyclists compared
to runners, probably due to the more intense training, causing

moremuscle damage, soreness, and systemic inflammation, in
runners compared to cyclists [16, 17]. Previous studies have
only included very few hematological parameters [18], and
the current study highlights for the first time the effect of
WBC on innate and adaptive immune systems.

According to that reported by previous studies, we found
an overall beneficial effect of WBC on lipid, glucose, and
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protein metabolism. Previous studies have cited the impor-
tance of at least 10 WBC sessions before lipid improvements,
but in this study, an increase of HDL in cyclists was observed
after only 3 WBC sessions [19–21]. WBC intensifies the me-
tabolism of proteins (as evident by the increase of urea con-
centration) and glucose (non-shivering thermogenesis during
cold exposure in brown adipocytes) [22, 23]. WBC also acts
on skeletal muscle contraction and fatigue (observed through
the increase in phosphorous) [24, 25]. Acute temperature de-
cline has been proven to favor a coagulation state [26]; a
significant decrease was observed in C and S proteins [27].
As other hematological and clinical chemistry parameters
have not been included in longer studies, the lack of changes
observed in this short study period cannot be compared.

Among many hormones included in this study, we ob-
served an increase in IGF-1 and FSH in cyclists and a decrease

in insulin levels in runners. IGF-1 is an anabolic growth factor,
important for muscle repair and remodeling, and its effect on
exercise is currently inconclusive and has never been reported
in WBC studies [28–30]. Contrary to our results, FSH was
found reduced in male subjects during winter, and the authors
suggested that it was due to seasonal effects, not only cold
exposure [31]. Insulin has also been reported to decrease in
some cold conditions, such as a shower at 10 °C after strenu-
ous exercise, or swimming in 6.8 °C water [32, 33].

We observed an increase of IL-18 in athletes, which plays a
key role in enhancing the cytotoxic activity of CD8+ T cells
and NK cells, as well as the production of TNF and INF-γ
[34]. Currently, no comparative data are available from the
literature. IL-18 has been reported to increase after regular
physical activity in skeletal muscle [35, 36] but not in plasma
[37, 38]. Thus, the effects observed in this study suggest that

Fig. 5 Gating strategy of B cells. Gating strategy used to identify CD19,
naïve, CD21low CD38low, marginal zone, class switched memory, class
unswitched memory, and transitional and plamasblast B cells in athletes

before and after WBC treatment. A first gate was set in CD45+ cells and
time, then on CD45+ cells and SSC-H, on physical parameters (FSC-H vs
FSC-W) to eliminate doublets, then on CD19+ that identify B cells
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18 after WBC relative to pre-
WBC expression (posed equal to
1, dotted line) in monocytes of
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WBC potentially enhances immunosurveillance. IL-1RA ex-
erts an anti-inflammatory action through the competitive inhi-
bition of the IL-1 receptor [39]. According to what has already
been observed in runners [40], we found an increase of this
cytokine in all athletes. CXCL8 (IL-8) is a potent neutrophil
attractant [41], and until now the effects of WBC on this
chemokine have only been studied by Banfi et al. on profes-
sional rugby players; they reported a decrease in CXCL8
levels [42]. The current study found an increase of CXCL8
levels in both groups. This difference could be due to training
protocols, the number and timing of WBC sessions, as well as
the different levels of the sport activity. CCL2, also known as
MCP-1 (monocyte chemoattractant protein-1), acts as a potent
monocyte attractant [43]. Thus, WBC could favor the

recruitment of monocytes into the tissue for tissue repair.
The downregulation of CD14 was observed on circulating
monocytes; downregulation produces a differentiation into
endothelial-like cells that adhere to the endothelium and pro-
mote vascular repair [44]. WBC treatment induces a general
decrease in chemokine receptors predominantly in cyclists,
except for of non-classical monocytes CCR2 and CCR5 and
CXCR4, whose expressions tend to increase after WBC.

Non-classical and intermediate monocytes decreased after
WBC, which may be due to their redistribution into the sur-
rounding tissue. The higher expression of CCR2 and their
ligand CCL2 suggests the promotion of the proliferation
stages of tissue repair, reported in soft tissue injury [45, 46].
CCR5 binds several chemokines and therefore monocytes that
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express this receptor are involved in all stages of wound
healing [46]. Finally, the decrease of CXCR4 in some subsets
could be consistent with their differentiation process; blood
monocytes are not fully differentiated cells, and when they
start to differentiate, they express high levels of CXCR4
followed by a downregulation in macrophages in tissue [46].

Thus, WBC through mechanisms as yet unknown seems to
promote monocyte differentiation.

B cells contribute to tissue regeneration, and mature B cells
have previously been shown to improve healing in a diabetic
mouse model [47, 48]. Thus, the decrease of mature B cells in
blood circulation could be ascribed to the redistribution to
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tissue, favoring its regeneration. The increase of naïve and the
simultaneous decrease of effector or exhausted T cells could
counteract the effect of inflammaging in which we observed
progressive exhaustion of adaptive immunity [49]. Finally, the
redistribution of Treg cells (probably into the tissue) could
have a role in muscle regeneration and healing, previously
observed in skeletal muscle Treg [50].

MtDNA probably derives from damaged cells due to sev-
eral types of injuries and is associated with different physio-
pathological conditions [12, 51, 52]. Among them, we previ-
ously reported that regular exercise induces a decrease of cir-
culating mtDNA [53], while intense and strenuous exercise

was found to have the opposite [54]. Thus, WBC does not
seem to have any additional effect on circulating mtDNA.

Among the inflammasome genes analyzed, only IL-1β in-
creased significantly. IL-1β secretion required two signals.
The first, via Toll-like receptor engagement, causes the upreg-
ulation of pro-IL-1β mRNA transcription, and the second
activates the inflammasome assembly that cleaves pro-IL-1β
in the active form [55]. Considering that we did not observe an
increase of circulating IL-1β after WBC and that
inflammasome-independent mechanisms of pro-IL-1β activa-
tion exist, we conclude that WBC probably does not influence
inflammasome activation [56].
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The obtained results should be interpreted with caution as
this study includes a small cohort, without control subjects,
over a short interventional period. However, a homogeneous
group of non-professional athletes, following the sameweekly
protocol of consistent training, was assembled, and all sub-
jects completed all 3 WBC sessions.

Conclusions

In non-professional athletes (cyclists and runners), WBC
seems to induce beneficial immunological and metabolic

responses and may be protagonist in promoting a process of
tissue repair. However, further studies are required to confirm
these promising results and should consider the selected pa-
rameters identified by this study.
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